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1 Introduction

The recurrent need in economics to measure asymmetric relationships and the growing research

using functional data has motivated us to study a regime-switching model for functional time

series.

Functional models have become popular, mainly due to their efficient representation of cross-

sectional and term structure data. The yield curve, heterogeneous inflation expectations, expected

inflation term structure, income and consumption distributions, global temperatures, and demo-

graphics are examples of variables studied using functional time series.

We use the expected inflation distribution (EID) as an example application for our model. In

analyzing the dynamic effects of economic shocks on this distribution, Chang, Gómez-Rodrı́guez,

and Hong (2022) observed significant changes in the magnitude of the period-by-period variations

of its density. To illustrate this behavior, we took several statistics describing survey data on

expected inflation1, calculated the yearly variance of these statistics, and plotted them in figure 1.

Periods with changes of increased magnitude are evident for all statistics, suggesting that it is the

entire distribution having a regime-switching behavior.

Figure 1. Variance of sample statistics of the EID distribution.
Note: Estimation of the calendar year variance of the sample average, standard deviation, relative frequency of 0% and 2%

inflation expectations, portion of deflation expectations and sample skewness of the responses of the University of Michigan’s

Survey of Consumers. Sample from January 1978 to December 2021. For reference, shaded areas represent the NBER Recessions.

1Survey of Consumers by the University of Michigan
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With our model, we analyze whether the effects of policy on inflation expectations are regime

dependent. We identify two regimes: stable and volatile, based on the size of the EID variations.

Note that our regimes are based on the time-variance of the entire distribution (all its features) and

not the cross-sectional variance (or standard deviation) which is only one aspect of EID.

In the volatile regime, a contractionary shock of twenty-five b.p. increases the mean one-year

inflation expectation by eight b.p. while increasing disagreement by four b.p. and reducing inflation

expectations anchoring; in the stable regime, the mean increases by three b.p. without effects on

dispersion or expected inflation anchoring. An increase in government spending shows a mild

uptick in the average inflation expectations only in the stable regime.

Our functional endogenous regime-switching model is an extension of the model proposed by

Chang, Choi, and Park (2017) (CCP). The key steps to adapt their model to functional time series

are: i) use functional principal components to model the dynamics of the functional process with a

vector autoregression model2, and ii) adapt CCP’s scalar AR model to a multivariate set-up and

apply it to the VAR model obtained in the first step. The latter step is the main contribution of this

paper.

Functional principal components (FPC) represent densities as a linear combination of just a few

time-invariant basis functions. We stack the loadings of the linear combinations in a vector and

use a VAR to represent their dynamics. Based on their shape we get to interpret the first FPC as

disagreement, shifting and ambiguity components.

Based on the VAR of loadings, we consider a regime-switching model where the covariance

matrix is regime-dependent. To identify the regimes, we focus on the largest eigenvalue of the

covariance matrix. For the regime dynamics, we assume there is a latent factor that, combined

with a threshold parameter, determines the model’s regime. We allow the innovations to the

functional time series to influence the latent factor with an endogenous feedback element. The

latter makes time-varying regime transition probabilities possible, a feature that typical Markov

regime-switching models do not have. Besides inferred probabilities and regime-dependent IRFs,

our model also extracts the expected value of the latent factor.

2The statistical properties of the latter step is rigorously studied by Chang, Park, and Pyun (2021). We refer interested
readers to this paper.
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Our application uses densities estimated using data from the Survey of Consumers by the

University of Michigan. The focus is on expected price changes over the following twelve months,

specifically on the responses to the question: “About what percent do you expect prices to go (up/down)

on the average, during the next 12 months?”. This question is one of 50 core questions in the survey.

The estimation is non-parametric and makes no strong assumptions on the structure of expected

inflation’s distribution.

We use the correlation of external policy shocks (from the literature) and functional, structural

shocks obtained from the RS-VAR model to determine the distribution of inflation expectations to

policy shocks.

Literature Review. This paper contributes to several strands of the literature, for instance, to

functional methods in macroeconomics. Inoue and Rossi (2019) use functional data to identify

monetary policy shocks. They do that based on the response of the entire yield curve to policy

announcements. Chang, Gómez-Rodrı́guez, and Matthes (2020) study the effects of the U.S.

government decisions on its borrowing costs. Based on long-run restrictions, our analysis focuses

on the yield curve’s response to fiscal policy measures.

Chang, Kim, and Park (2018) (CKP) and Chang, Chen, and Schorfheide (2018) independently

consider a functional autoregression that stacks macroeconomic aggregates and a cross-sectional

density. Both papers apply their econometric model to study the effects of macroeconomics shocks

on income distribution. Chang, Miller, and Park (2019) applies the functional SVAR methodology

introduced by CKP on the time series of key aggregate climate variables and global temperature

distributions to study the effects of various popular natural and anthropogenic shocks to the climate

system.

Additionally, this paper contributes to the literature on expected inflation disagreement. Mankiw,

Reis, and Wolfers (2004) argues that disagreement contributes to the analysis of monetary policy

and the business cycle. Other papers analyze the real effects of expected inflation disagreement.

For example, Ehling et al. (2015) show that inflation disagreement drives a wedge between real and

nominal yields. Falck, Hoffmann, and Hürtgen (2019) show that monetary policy effectiveness is

regime-dependent, based on the cross-sectional standard deviation of inflation expectations.
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Using the framework we used here a starting point, Chang, Gómez-Rodrı́guez, and Hong (2022)

study the effects of multiple economic shocks on the distribution of inflation expectations. We

extend the analysis to incorporate regime contingent effects.

Outline. Section two goes through the mathematical and technical details of functional time

series. We describe the conditions and restrictions we impose on functional time series to formulate

the regime-switching model. In section three we describe the functional endogenous regime-

switching model and the procedure to obtain functional IRFs from external shocks. Our application

case begins with section four, which characterizes the process that estimates the densities from the

survey data. Section five analyzes the estimation results and the regime-dependent effects of fiscal

and monetary policy. Section six concludes.

2 Modelling Functional Time Series

This section will lay the groundwork for the formal analysis of functional time series. It describes

the type of mathematical space we use for the functions in the time series: separable Hilbert spaces.

Then, this section presents functional principal components to determine the finite-dimensional

basis that summarizes the functional time series in a small set of components explaining most of

the process’ total variance.

2.1 Separable Hilbert Space

We assume that the functional time series takes values on H “ L2pRq, the space of square-

integrable functions. That is, in the space H we will find all functions u : R ÞÑ R such that

ż

R

u2pτqdτ ă 8

The space H is a Hilbert space, which means that an inner product can be defined for functions in it.

We define the following inner product for any two functions u and v in H

xu, vy “
ż

R

upτqvpτqdτ
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It is a well-known fact that for L2-functions, such as the ones in H this inner product is well-defined.

The norm induced by this inner product is defined by }u} “
a

xu, uy.

With an inner product we gain geometric intuition to analyze functions. We can talk of length

of a function and orthogonality between two functions. This will be helpful to construct functional

principal components.

The Hilbert space H is also separable. This means that it has a countable basis. For an (or-

thonormal) basis of H pviq any element f of H may be expressed as a linear combination of basis

functions

f “
8
ÿ

i“1

xvi, f yvi

in L2-sense. With a truncation number m we may approximate the function f with

f «
m
ÿ

i“1

xvi, f yvi (1)

The tensor product ub w with any given u and w in H is a linear operator on H defined as

pubwqv “ xv, wyu for all v in H. If H is finite dimensional and represented by Rn, ubw “ uw1,

i.e., ubw reduces to the outer product, contrastingly with the inner product xu, wy “ u1w, where

u1 and w1 are the transposes of u and w. If u and w are random functions taking values in H, then

their covariance operator Epubwq is generally defined as a linear operator satisfying

@

vi, rEpubwqsvj
D

“ Exvi, uyxvj, wy

for all vi and vj in H.

A critical step to move forward is to choose a basis for the Hilbert space H. With this goal in

mind, we use functional principal components to define the basis tv˚1 , v˚2 , . . .u in H.
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2.2 Functional Principal Component Basis

Typical examples of functional bases are given by sets of deterministic functions such as

polynomials and trigonometric functions. They are independent of the data. In contrast, the

functional basis used in this paper is obtained by functional principal components analysis, and

determined directly by the actual data. The use of any deterministic functional basis, at least

theoretically, is allowed and legitimate. However, from the practical point of view, it is very

important to choose a functional basis whose leading components effectively summarize the time

series variation.

Let ft P H represent the functional time series we would like to analyze. Denote by Γ the sample

variance of ft, i.e.,

Γ “ T´1
T
ÿ

t“1

p ft b ftq

and by λ1 ě λ2 ě ¨ ¨ ¨ its ordered eigenvalues, and by v˚1 ,v˚2 , . . . the corresponding orthonormal

eigen-functions. These are the components that build the principal component basis. The eigenval-

ues are interpreted as the portion of the variance explained by the corresponding eigenfunctions.

Note that Γ is a self-adjoint operator on H, and therefore, its eigenvalues are all real.

The cumulative portion of the variance explained by the m leading factors, v˚1 , v˚2 , v˚3 , . . . , v˚m, is

given by

θpmq “
řm

i“1 λi
ř8

i“1 λi
. (2)

Note that Γ has only T nonzero eigenvalues, and therefore, λi “ 0 for all i ą T.

Example: EID. To illustrate this, in figure 2 we present the so-called scree-plot, with the portion

θpmq of variance explained by the first five components for our example functional time series the

EID. In the implementation part, we use m “ 3 since it is the first value of m whose θpmq surpasses

95% of the total variance. See Paparoditis et al. (2018) for a justification of this approach to choose m.

There is no strict rule that can be used to determine m. The approximation involved in representing

infinite dimensional functions by finite dimensional vectors requires m Ñ 8 as T Ñ 8, and the

6



existing theory relevant to the choice of m only specifies at what rate m diverges to infinity as T

increases. The main results in the paper are not sensitive to the choice of m, unless it is set to be too

large.3

Figure 2. Scree-plot: What portion of the variance of EIDs is explained by FPC?
Note: Proportion of the variance of the time series of EIDs which is explained by the functional principal components. Three

principal components explain above 95% of the variability of the functional process.

To illustrate the principal components figure 3, 4 and 5 show and explain v1, v2 and v3 together

with its respective loadings. Together they explain over 95% of the process’s total variance. Each of

the figures show the shape of the functional component, the “range of motion” generated by this

component and the loading in the sample.

Interpretation of Functional Principal Components We gave the name disagreement to the first

component, positive values on this direction will reduce inflation expectations between -2% and 6%

and increase deflation expectations below -2% and above 6%. This increases the standard deviation

of the distribution. For the second component we use the name shift, since it lowers the density of

inflation expectations below 2% and increases inflation expectations above. Finally, the ambiguity

component owns its name to the fact that inflation expectations at 2% (stable inflation) and high

inflation expectations increase their density.

3The main empirical results in the paper are obtained from a structural VAR with regime switching. It is therefore
natural to expect that they become unstable if based on excessively large dimensional VARs.
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Figure 3. Functional Principal Component: Disagreement

Figure 4. Functional Principal Component: Shift

Figure 5. Functional Principal Component: Ambiguity
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2.3 From Functions to Vectors

Once a number of principal components is fixed, we can use a vector to represent a the density

function as well as matrices to represent linear operators in H.

For a given truncation number m, define a mapping

π : f ÞÑ

¨

˚

˚

˚

˝

xv1, f y
...

xvm, f y

˛

‹

‹

‹

‚

(3)

and write

πp f q “ p f q (4)

for any f in H. Accordingly, for bounded linear operators4 let

π : A ÞÑ

¨

˚

˚

˚

˝

xv1, Av1y ¨ ¨ ¨ xv1, Avmy

...
...

...

xvm, Av1y ¨ ¨ ¨ xvn, Avmy

˛

‹

‹

‹

‚

(5)

be the corresponding mapping on A given by

πpAq “ pAq (6)

for any operator A on H.

It is important to clarify, that p f q is a vector whose coordinates are not to be interpreted, instead,

they are the weights of the principal components v˚1 , v˚2 , ¨ ¨ ¨ , v˚m, to recover the approximated

function of ft (see equation 1).

Our next step is to model the dynamics of functional time series ft using a regime switching

vector autoregression on p ftq.

4Linear operators mapping elements of H into itself.
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3 Modelling Functional Time Series Dynamics

This section discusses the econometric framework used to analyze the dynamics of the func-

tional time series. First, we describe the regime-switching model that will represent the dynamics

of the process. Followed by the procedure used to obtain the response of ft to the external monetary

and fiscal policy shocks.

3.1 The Regime Switching Model

The time series of basic statistics displayed in Figure 9 made it clear that the time series of

expected inflation densities has periods of high volatility and periods of low volatility. This

observation motivates the introduction of a regime-switching model for functional time series.

We model the distribution of inflation expectations to switch between a volatile regime and a

stable regime. It is reasonable to expect that any factor influencing the process’s regime should also

directly affect the variable that determines regime switching. For this reason, an endogenous regime-

switching model like the one introduced in Chang, Choi, and Park (2017) is ideal in this context. A

consequence of incorporating endogeneity into the model is that the transition probabilities are

time-varying5. My contribution is to adapt the model to functional data.

The model has three parts: i) the regime dependent autoregressive model, ii) a latent vari-

able that dictates the regime of the process, and iii) the endogenous feedback channel from the

innovations to the expected inflation densities to the regime transition probabilities.

The functional regime switching model used in the paper is specified as

p ftq “ pAqp ft´1q` Bpstqet, (7)

where ϕt is the time series of demeaned expected inflation densities modelled as a functional

autoregressive process with the autoregressive operator A and the error volatility operator Bpstq

given as a function of the state process st taking values 1 and 0, which refer to the volatile and

stable regimes, respectively. The presence of regime switching allows the volatility changes in

5Classical Markov regime switching models have time-invariant transition probabilities.
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the dynamics of the distribution of inflation expectations. The operators A, Bp1q and Bp0q are all

assumed to be compact, and the innovation et is defined as a functional time series with identity

covariance operator as required for the identification of Bpstq.

The state process st is defined as st “ 1twt ą τu, where wt is an autoregressive latent factor

generated as

wt “ αwt´1 ` ηt (8)

ηt “ xρ, et´1y `

b

1´ }ρ}2 δt, (9)

where α P p´1, 1s is the autoregressive coefficient of wt, ηt and δt are zero mean and unit variance

random sequences that are independent of each other, and ρ is the correlation function between et´1

and ηt. The autoregressive coefficient α determines the persistence of the regimes, and in particular

values of α close to one indicate more persistent regimes. The regime switching model defined

by (7), (8) and (9) may be viewed as an extension of the model in Chang, Choi, and Park (2017) to

functional time series models.

The regime switching mechanism introduced here is endogenous, in the sense that the func-

tional innovation et can influence the regime transition probabilities to the next period. This feature

will be referred to as the endogenous feedback more explicitly. The strength of endogenous feedback is

determined by the magnitude of correlation ρ between et´1 and ηt. Note that ρ is a single function,

since et´1 is a function while ηt is a scalar. If }ρ} “ 0, the endogenous feedback disappears, and the

regime switching model defined above reduces to the classical Markov switching model, where

regime switching is assumed to be entirely exogenous and driven by a Markov state variable. The

correlation function ρ determines how a shock to the process of expected inflation densities influ-

ences the transition probability. When xρ, et´1y is positive(negative), the probability of switching to

the second regime in the next period is higher(lower), or equivalently, the probability of switching

to the first regime is lower(higher). In the presence of endogenous feedback, the transition proba-

bility clearly changes in time. This is in sharp contrast with the conventional Markov switching

model.
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For the estimation of the model, Gaussianity is assumed. The scalar innovations ηt and δt are

assumed to be standard normal. Likewise, et is assumed to be a standard Gaussian process, i.e., for

any function v P H, xv, ety is normally distributed with mean zero and variance }v}2.

3.1.1 Estimation

To estimate the model consider the projection on Hm as described in the previous section. Let

ϕm
t “ πmpϕtq, em

t “ πmpetq, Am “ πmpAq, Bmpstq “ πmpBpstqq, and ρm “ πmpρq. Estimation is based

on the regime switching VAR model

ϕm
t “ Am ϕm

t´1 ` Bmpstqem
t , (7’)

which approximates (7). It is well expected from Paparoditis et al. (2018) that the approximation of

(7) by (7’) is valid if m is set to diverge to infinity as T increases at an appropriate rate. However,

the validity of using (7’) as an approximate model will not be discussed in any detail, since it is not

a main focus of the paper.

In the following, we describe the estimation procedure from Chang, Choi, and Park (2017)

applied to the model in this paper. The estimation is obtained from a maximum likelihood method.

The log-likelihood function is given by

`pϕm
1 , ¨ ¨ ¨ , ϕm

T q “ log ppϕm
1 q `

T
ÿ

t“1

logpppϕm
t |Ft´1qq,

where Ft represent the information given by ϕm
1 , ¨ ¨ ¨ , ϕm

t for t “ 1, 2, . . . , T. This log-likelihood

function depends on a set of parameters denoted by θ for brevity in notation. The maximum

likelihood estimator of θ is obtained as the maximizer of the log-likelihood function over the

parameter set Θ, i.e., argmax
θPΘ

`pϕm
1 , ¨ ¨ ¨ , ϕm

T q. The parameter θ includes Am, Bmp0q, Bmp1q, α, ρm and

τ. The estimation of the model is performed using the modified Markov switching filter developed

in Chang, Choi, and Park (2017), which we extend to the multivariate case here in this paper.

The following theorem specifies the joint transition of (st) and (yt) in the case }ρm} ă 1, where

the norm } ¨ } now refers to the Euclidean norm in Rm.6 This version of the theorem is specific to
6The notation } ¨ } is abused to denote the Euclidean norm in Rm as well as the norm in H. This is to avoid introducing

additional notation, and should not cause any confusion.
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the case where the data generating process is of order one, but the theorem can easily be extended

to higher order models.

Theorem 1. Let }ρm} ă 1. The m` 1 dimensional process pst, ϕtq on t0, 1u ˆRm is a first order Markov

process, whose transition density with respect to the product of the counting and Lebesgue measure is given

by

ppst, ϕm
t
ˇ

ˇst´1, ϕm
t´1 q “ ppϕm

t |st, ϕm
t´1q ˆ ppst|st´1, st´2, ϕm

t´1q,

where

ppϕm
t |st, ϕm

t´1q “ NpAm ϕm
t´1, BmpstqBmpstq

1q

and

ppst|st´1, ϕm
t´1, ϕm

t´2q “ p1´ stqωρ ` stp1´ωρq

with transition probability ωρ “ ωρpst´1, ϕm
t´1, ϕm

t´2q of pstq to the state st “ 0 conditional on the previous

states and the past values of observed time series. If |α| ă 1,

ωρ “

$

’

’

’

’

&

’

’

’

’

%

şτ
?

1´α2
´8

Φ

˜

τ´ρ1mem
t´1?

1´}ρm}2
´ αx?

1´α2
?

1´}ρm}2

¸

ϕpxqdx

Φpτ
?

1´α2q
if st´1 “ 0

ş8

τ
?

1´α2 Φ

˜

τ´ρ1mem
t´1?

1´}ρm}2
´ αx?

1´α2
?

1´}ρm}2

¸

ϕpxqdx

1´Φpτ
?

1´α2q
if st´1 “ 1

.

In Theorem 1, it is assumed that }ρm} ă 1. In the case of }ρm} “ 1, the transition probabilities

are given by the following corollary.

Corollary 1. If }ρm} “ 1, the transition probability ωρ “ ωρpst´1, st´2q of (st) to the state st “ 0

conditional on the previous states and the past values of observed time series is given by

(a) If α “ 0, ωρ “ 1tρ1em
t ă τu.

(b) If 0 ă α ă 1,

ωρ “ p1´ st´1qmin

¨

˝1,
Φ
´

pτ´ ρ1mem
t´1q

?
1´α2

α

¯

Φ
´

τ
?

1´ α2
¯

˛

‚
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` st´1max

¨

˝0,
Φ
´

pτ´ ρ1mem
t´1q

?
1´α2

α

¯

´Φ
´

τ
?

1´ α2
¯

1´Φ
´

τ
?

1´ α2
¯

˛

‚.

(c) If ´1 ă α ă 0,

ωρ “ p1´ st´1qmin

¨

˝1,
1´Φ

´

pτ´ ρ1mem
t´1q

?
1´α2

α

¯

1´Φ
´

τ
?

1´ α2
¯

˛

‚

` st´1max

¨

˝0,
Φ
´

τ
?

1´ α2
¯

´Φ
´

pτ´ ρ1mem
t´1q

?
1´α2

α

¯

Φ
´

τ
?

1´ α2
¯

˛

‚.

Given Theorem 1 and Corollary 1, the modified Markov switching filter from Chang, Choi, and

Park (2017) can be used, with some obvious modifications, to estimate the parameters Am,Bmp0q,

Bmp1q, α, ρm and τ in the model and extract the latent factor wt.

3.2 Identification of Structural Shocks

Suppose for now that we know the current regime st. We focus on the structural shocks which

can be obtained from

et “ Bpstq
´1ut

where ut is the reduced form error. Recall that et is an m dimensional vector. We use the correlation

between the vector et and the external shock εt, which is a vector itself to obtain the response of the

distribution of inflation expectations to the corresponding external shock.

Of course, the state variable st is unobservable and the regime is unknown. However, the

regime can be inferred and the inferred regime can be used for the regime dependent identification

scheme used in the paper, the inferred regime can be used. From the filter used in the estimation,

the inferred regime probability Ppst|Ftq of the regime is obtained for each regime. To minimize

the error in inferring regimes, one may concentrate on sub-samples in which the probability of

either regime is high. To this end, consider two real increasing sequences aT, bT Ñ 1 as T Ñ8, and
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define two sub-samples S0 and S1 of t1, 2, ¨ ¨ ¨ , Tu such that

S0 “
 

t
ˇ

ˇPpst “ 0|Ftq ě aT
(

S1 “
 

t
ˇ

ˇPpst “ 1|Ftq ě bT
(

.

Since aT, bT Ñ 1 as T Ñ8, the probability of correctly inferring regimes increases and get close to

one as the sample size increases. Therefore, using inferred regimes is allowed and should not affect

the results in any significant manner, at least when the sample size is reasonably large.

4 Application: Expected Inflation Distribution (EID)

This paper uses data from the Survey of Consumers to estimate the density functions that will

model the distribution of inflation expectations. In this section, we briefly describe the procedure we

used to obtain the density functions from the survey data. This process will generate the functional

time series of expected inflation densities. The analysis of the effects of economic policy on the

distribution of inflation expectations is performed on the entire density function. Nevertheless, it is

useful for the economic analysis to use different aspects of the distribution to describe its dynamics.

Hence, from the density functions, we also extract the time series of some aspects of the distribution:

mean, standard deviation, relative frequency at 2% (the Federal Reserve’s inflation target) and at

0% (constant prices), the portion of the density that is negative and the tail mass (expectations

that are more than three standard deviations away from the mean). These time series illustrate the

different ways in which the entire distribution varies over time and aid the interpretation of the

analysis.

4.1 From Survey Data to Functional Data

Each month the University of Michigan conducts the Survey of Consumers via telephone with

a minimum of 500 participants7. Per design, the sample represents the population8. The survey

consists of 50 core questions; the question of interest in this paper is: By about what percent do you

7With a range of 408 to 1205 valid responses for the inflation expectations question. See appendix.
8“The samples for the Surveys of Consumers are statistically designed to be representative of all American households,

excluding those in Alaska and Hawaii.” Taken from the Survey Description on their website.
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expect prices to go (up/down) on the average, during the next 12 months? The estimation of the density

functions follows from the responses to this question.

This paper uses a non-parametric method. This means that the shape of the density is not

predetermined. Instead, the density is the weighted sum of kernel functions and the data is the

main factor determining the shape of these densities. The name of this methodology is kernel

smoothing densities. For further details see, for example, Bowman and Azzalini (1997).

Figure 6. Time series of standard deviation corresponding to the expected inflation densities in the sample.

To illustrate the process, Figure 6 displays the histogram of the single responses for April 2011.

In the same figure, the red line is the resulting density from using a kernel smoothing estimation

method. The estimation used a Epanechnikov kernel with the corresponding optimal bandwidth

for each month9 Using the density function provides an efficient way of representing all the data 10.

The precision of the estimation, that is, how close is the estimated density from the actual density

(representing the whole population’s inflation expectations), depends on the cross-sectional sample

size of each month (Park and Qian, 2012).

Repeating this process for the whole sample generates the time series of inflation expectations

densities. Figure 7 shows the times series for the given sample. The graph is “three-dimensional”

given that the time series has the time axis from 1978 to 2021, the expected inflation axis from

9The bandwidth used for each month in the sample is available as a graph in the appendix.
10The implementation starts by describing the density functions using a wavelet-basis (Daubechies, 1992). The

wavelets are an efficient way of reading the data on density functions.
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Figure 7. Functional time series of expected inflation densities. Sample from January 1978 to December 2021.

-20% to 30%, and the value of the density. It represents the relative frequency of each inflation

expectation.

For computational convenience we analyze the time series of deviations from the mean density.

For illustration, Figure 8 displays the time series in a two dimensional plot. The function’s

interpretation is in terms of the relative size of the group of individuals with a particular inflation

expectation. Negative values imply that fewer individuals have that expectation. On the contrary,

positive values imply that more individuals, relative to the mean density, have the corresponding

inflation expectation. One characteristic that is clear from the figure is that the most variation

concentrate in the range of 0% to 15%.

It is helpful to describe the density function in terms of specific statistics. One may typically

think of the mean or the standard deviation. The advantage of using densities is obtaining statistics

that play a more significant role in economic analysis. For example, one can analyze the percentage
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Figure 8. Functional time series of deviation of expected inflation densities from the mean density.

of the population with inflation expectations “on-target” by calculating the density of expectation

close to 2%.

4.2 Characterizing Expected Inflation Densities

The previous subsection explained the process that estimates density functions based on the

survey data. This subsection provides additional tools to analyze and interpret density functions:

distribution statistics or aspects.

Common statistics used to describe a density function are its moments. Mainly the mean and

the variance (standard deviation). Additionally, one may think of other central tendency measures

(median and mode), the range, or higher moments. One advantage of using density functions

is the availability of other statistics. For example, as previously mentioned, a Central Bank with

an inflation target of, say, 2% can be interested in analyzing the relative frequency of agents with

inflation expectations “on target”. Binder (2017) builds an index for economic uncertainty from

people’s tendency to reply round numbers (multiples of 5) for their inflation expectations. This

phenomenon, is referred to digit preference, an additional statistic we may use for analysis.
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Other literature studying the dispersion of inflation expectations uses the monthly interquartile

or standard deviation. By using a density function means all properties or statistics described here

and any other derivable from the density function, will be available throughout the analysis. Figure

9 shows example properties of expected inflation distributions.

Figure 9 shows the time series of six statistics for the time series of deviations of the distribution

of inflation expectations from the mean distribution. In some time series more than in others, one

observes that there are periods in which the observed property fluctuates more. This is the change

in volatility that motivates the introduction of functional regime switching models in section 3. The

Figure 9. Time series of aspects describing the deviation of the distribution of inflation expectations from the
mean. Sample January 1978 to December 2007.

following information describes the definition of each of those properties:

(a) Mean: first moment of the density function.

(b) Standard Deviation: square-root of second moment of the density function.

(c) Mass around 0%: Portion of the population with inflation expectations within 1% of the most

frequent expectation.
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(d) Mass around the 2%: Portion of the population with inflation expectations between 1.5%

and 2.5%.

(e) Deflation expectations: relative size of expectations below 0% (portion of individuals who

expect prices to go down).

(f) Tail Mass: Percent of expectation over three-standard deviations away from the mean.

5 Regime Dependent Effects of Monetary and Fiscal Policy on EID

In this section, we present the results and analysis of the estimation of the model. We start by

describing the regimes of the time series of expected inflation densities using the responses of the

basis responses in each regime. Then, we analyze the regime dynamics of the process using the

inferred probabilities and the parameters related to the latent factor. Finally, we analyze the effects

of monetary and fiscal policy on the distribution of inflation expectations.

The estimation of the model used the sample from January 1978 to December 2007. The choice

of this period is because the external shocks used to determine the effects of monetary and fiscal

policy are only available until December 2007.

5.1 Description of the Regime using the Responses At-Impact

From the estimation we obtain two different covariance matrices Σp0q and Σp1q. The way

we obtain the impulse responses is by finding the linear combination of functional shocks that

maximizes the correlation with the external shock. Since we are combining the shocks the factoriza-

tion (identification) of the covariance matrices ultimately does not play a role. Therefore, we use

recursive identification. So we use the factorization

Σpstq “ BpstqBpstq
1

such that Bpstq is lower triangular. We use the columns of Bpstq to determine what we call basis

responses. These are function which are used as basis to obtain the response of EID to external
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shocks using the correlation factors of each functional shock and the external shock. Figure 10

shows the at-impact basis responses of EID.

Given that we used three principal factors to describe the dynamics of the distribution of

inflation expectations (m “ 3) and according to the identification procedure described in the

previous section we consider two external shocks for the structural analysis: the monetary policy

shock estimated in Miranda-Agrippino and Ricco (2018) and a government defense spending shock

from Auerbach and Gorodnichenko (2012).

Figure 10. Regime Dependent Basis Responses.

Note: These are the responses based on the columns of the lower triangular Cholesky factors of Σpstq.

In figure 10 we can appreciate that during the volatile regime the same one-standard deviation

shock causes a larger change in the distribution of inflation expectations. For implementation we

focused the first eigenvalue of the covariance matrix of the reduced form errors to identify the

model.

These responses are not the only way in which policy can generate different responses on the

distribution of inflation expectations. The correlation of the external shocks with the functional

shocks can also vary with the regime. So, in one regime a shock can have a high correlation with

one of the shocks and low or even opposite sign correlation in another regime.
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5.2 The Regime Dynamics

From the inferred probabilities in Figure 11 it is possible to observe that there is a lot of dynamics

between the regimes. Periods around the recessions are typically the high volatility regime but

other noticeable periods are of the volatile regime for example during 1987, 1994, 1996.

Figure 11. Inferred probability of a volatile regime.
Note: For the estimation with the sample from 1978Q1 to 2007Q4 these are the inferred probabilities of a volatile regime.

Parameter α τ }ρ}

Estimate 0.8224
p0.0366q

´0.625
p0.3439q

1
p0.1562q

Table 1. Estimation of the regime dynamics parameters.

Note: Standard errors obtained bootstrapping of the parameters that describe the regime dynamics.

From a the estimation of τ we learn that during the period of January 1978 to December 2019

both regime are observed equally often. the stable regime was observed more often. The value of

estimated α indicates that the regimes are persistent.

The large value of the estimated norm of ρ, indicates strong endogenous feedback, which

indicates that the transition probabilities are mainly determined by the same factors that influence

the functional time series.
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The parameter function ρ (figure 12) tells us that when dispersion increases, so does the

transition probability of to the volatile regime.

Figure 12. Parameter function ρ.
Note: Parameter function ρ. The 68% confidence band is estimated using bootstrap methodology.

5.3 Regime Dependent Effects of Policy on EID

We want to determine the regime dependent effects of monetary and fiscal policy on EID. We

first analyze the effects on the entire distribution and then the effects on selected statistics. We will

demonstrate that modelling the distribution of inflation expectations as a regime-switching sheds

light on some effect

The effects of monetary policy. Monetary policy has shifting effect. In the stable regime there

is a significant reduction of inflation expectations in the range between 0% and 5% and also an

increase in the interval around 10%. There is an increase of inflation expectations around 2%

(inflation expectations anchoring). In the volatile regime the increase in inflation expectations is

ever higher, not only negative inflation expectations but also low inflation expectations are less

frequent after a contractionary monetary policy shock while we observe an increase in inflation

expectations of high (ą 7%). The correlation between the monetary policy shock and EID functional

shocks is 21.96%
p10.85%q

in the stable regime and 37.96%
p9.74%q

in the volatile regime. This percentage can be

interpreted as the portion of the shock that is transmitted to EID.
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Figure 13. Response of the entire expected inflation density to a contractionary monetary policy shock.

The effects of fiscal policy. The main economic effect of government spending on the distri-

bution of inflation expectations is an increase on inflation expectations around 5% in the volatile

regime. This increase, is not reflected in the mean or in the standard deviation of the distribution as

one can see in figure 15 but is a significant difference that is not observable in the stable regime.

Figure 14. Response of the entire expected inflation density to a government defense spending shock.
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Figure 15. Regime dependent response of selected aspects of the distribution to monetary and fiscal policy
shocks.

6 Conclusion

We presented the implementation of a regime-switching model for functional time series. The

critical step is to use functional principal components to represent the functional time series as

vectors.

The model in this paper focuses on a regime-dependent covariance matrix or so-called volatility

model; nonetheless, the approach we presented here allows for mean and autocovariance elements

to switch regimes as needed.

As an example, this paper modeled the distribution of inflation expectations using density

functions and determined how economic policy affects the distribution contingent on a regime.

Here, we considered a monetary policy shock Miranda-Agrippino and Ricco (2018) and a defense

government spending shock from Auerbach and Gorodnichenko (2012). We learned that Monetary

policy increases inflation expectations about two times more during the volatile regime. This result

implies that in a volatile regime, when the contractionary policy is trying to decrease inflation,
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inflation expectations make this task more difficult; instead, during the stable regime, the effects on

the mean and other aspects of the distribution are minor or none. This fact confirms that monetary

policy has a better chance to be effective in periods of stability in the heterogeneity of inflation

expectations.

Future research could study the effects of changes in the entire distribution of inflation expecta-

tions on inflation or real outcomes such as GDP or unemployment. Here the authors are considering

a model with mixed elements (functional and scalar), which will improve our understating of the

inflation expectations channel of policy.
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A Analysis Based on a Linear Model

Based on a linear model (i.e. without changes in regime), here we present the impact of monetary

and fiscal policy on the distribution of inflation expectations.

The model considered here is given by

ϕt “ Aϕt´1 ` Bεt (10)

where ϕt continues to be the demeaned expected inflation density. As opposed to the model in the

main text the response-at-impact operator B does not change in regime. The response at impact to

a monetary policy and fiscal policy shock are shown in the following Figure.

Figure 16. Response of the Distribution of Inflation Expectations to fiscal and monetary policy.

Response to a monetary policy shock. Response to a government defense spending shock.
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Figure 17. Impulse response functions of different aspects of how the distribution of inflation expectations
deviate from the mean distribution after a fiscal policy shock.

Figure 18. Impulse response functions of different aspects of how the distribution of inflation expectations
deviate from the mean distribution after a monetary policy shock.
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B Additional Information

B.1 Bandwidth

In the main text, we mentioned that the bandwidth for estimating the density from the survey

data depends on the specific data for the month. The following figure shows the bandwidth used

in each month of the estimation.

Figure 19. This is the bandwidth used in each month for the estimation using kernel smoothing densities.
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B.2 Number of Responses

In the main text, we mentioned that the bandwidth for estimating the density from the survey

data depends on the specific data for the month. The following figure shows the bandwidth used

in each month of the estimation.

Figure 20. Number of valid responses in the University of Michigan’s Survey of Consumers.
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C Proofs

The following two proofs are adapted from Chang, Choi, and Park (2017) for the multivariate

case in this paper.

Proof of the Theorem:

From equation (9’) follows that

η̃t “
wt ´ αwt´1 ´ ρ1mεm

t´1
a

1´ }ρm}2
ñ ppη̃t|wt´1, ϕm

t´1, ϕm
t´2q “ Np0, 1q

It follows that

Ptwt ă τ|wt´1, wt´2, εm
t´1, εm

t´2u

“ P

#

η̃t ă
τ´ αwt´1 ´ ρ1mεm

t´1
a

1´ }ρm}2

ˇ

ˇ

ˇ

ˇ

ˇ

wt´1, wt´2, εm
t´1, εm

t´2

+

“ Φ

˜

τ´ αwt´1 ´ ρ1mεm
t´1

a

1´ }ρm}2

¸

Note that

ppwt|wt´1, wt´2, εm
t´1, εm

t´2q “ ppwt|wt´1, εm
t´1q

and that wt´1 is independent of εm
t´1. Consequently, we have

Ppwt ă τ|wt´1 ă τ, wt´2, ϕm
t´1, ϕm

t´2q

“ Ppwt ă τ|wt´1

a

1´ α2 ă τ
a

1´ α2, wt´2, ϕm
t´1, ϕm

t´2q

“ Ppst “ 0|st´1 “ 0, wt´2, ϕm
t´1, ϕm

t´2q

“

şτ
?

1´α2

´8
Φ
ˆ

τ´ρ1mεm
t´1?

1´}ρm}2
´ αx
?

1´α2
?

1´}ρm}2

˙

ϕpxqdx

Φpτ
?

1´ α2q

and

Ppwt ă τ|wt´1 ě τ, wt´2, εm
t´1, εm

t´2q
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“ Ppwt ă τ|wt´1

a

1´ α2 ě τ
a

1´ α2, wt´2, εm
t´1, εm

t´2q

“ Ppst “ 0|st´1 “ 1, wt´2, εm
t´1, εm

t´2q

“

ş8

τ
?

1´α2 Φ
ˆ

τ´ρ1mεm
t´1?

1´}ρm}2
´ αx
?

1´α2
?

1´}ρm}2

˙

ϕpxqdx

1´Φpτ
?

1´ α2q

since in particular wt´1
?

1´ α2 “d Np0, 1q from which the stated result from the transition density

for pst, εm
t qmay be readily obtained.

Now, we write

ppst, εm
t |st´1, ¨ ¨ ¨ , s1, εm

t´1, ¨ ¨ ¨ , εm
1 q “ ppεm

t |st, st´1 ¨ ¨ ¨ , s1, εm
t´1q

ˆppst|st´1, ¨ ¨ ¨ , s1, εm
t´1q

It follows that

ppεm
t |st, st´1 ¨ ¨ ¨ , s1, εm

t´1, ¨ ¨ ¨ , εm
1 q “ ppεm

t |st, st´1, εm
t´1q

Moreover, we have

ppst|st´1, ¨ ¨ ¨ s1, εm
t´1, ¨ ¨ ¨ εm

1 q “ ppst|st´1, εm
t´1q

as we have shown above. Therefore, it follows that

ppst, εm
t |st´1, ¨ ¨ ¨ , s1, εm

t´1, ¨ ¨ ¨ , εm
1 q “ ppεm

t |st, st´1, εm
t´1q ˆ ppst|st´1, εm

t´1q

“ ppst, εm
t |st´1, εm

t´1q

and pst, εm
t q is a first order Markov process.˝
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Proof of the Corollary:

Consider here only the case 0 ă α ă 1. The proof for the case α “ 0 is trivial and the proof of

´1 ă α ă 0 can be easily done with a simple modification of the case of 0 ă α ă 1.

It follows that

Ptwt ă τ|wt´1, ϕm
t´1, ϕm

t´1u “ Ptαwt´1 ` ηt ă τ|wt´1, ϕm
t´1, ϕm

t´1u

“ Ptαwt´1 ` ρmεm
t´1 ă τ|wt´1, ϕm

t´1, ϕm
t´1u

“ Ptαwt´1 ` ρmεm
t´1 ă τ|wt´1, εm

t´1u

“ 1tαwt´1`ρ1mεm
t´1ăτu

When 0 ă α ă 1

ωρpst´1 “ 0, ϕm
t´1, ϕm

t´2q “ P
 

αwt´1 ` ρ1mεm
t´1 ă τ|wt´1 ă τ, εm

t´1
(

“ P

#

a

1´ α2wt´1 ă

?
1´ α2pτ´ ρ1mεm

t´1q

α

ˇ

ˇ

ˇ

a

1´ α2wt´1 ă
a

1´ α2τ, εm
t´1

+

“

$

’

’

&

’

’

%

1, if 1
α pτ´ ρ1mεm

t´1q ă τ

Φ
ˆ

pτ´ρ1mεm
t´1q

?
1´α2
α

˙

Φpτ
?

1´α2q
, otherwise

similarly,

ωρpst´1 “ 1, ϕm
t´1, ϕm

t´2q “ P
 

αwt´1 ` ρ1mεm
t´1 ă τ|wt´1 ą τ, εm

t´1
(

“ P

#

a

1´ α2wt´1 ă

?
1´ α2pτ´ ρ1mεm

t´1q

α

ˇ

ˇ

ˇ

a

1´ α2wt´1 ą
a

1´ α2τ, εm
t´1

+

Φ
´

pτ´ ρ1mεm
t´1q

?
1´α2

α

¯

´Φ
´

τ
?

1´ α2
¯

1´Φ
´

τ
?

1´ α2
¯ ˆ 1

"

τ´ ρ1mεm
t´1

α
ě τ

*
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D Bootstrapping

We will use bootstrapping to determine the confidence intervals of the statistics we estimate for

the EID and its responses to external shocks. Start by consider a sample of the EID synchronized

with the sample of the external shock. The majority of the external shocks we consider here are

given in quarterly frequency so we consider the last observation of the EID for the corresponding

quarter. That way, we have two identical samples in size and frequency.

In the following, we show how to generate copies of functional time series and the external

shock of size n:

(a) Take the reduced form residuals from the estimated model: εt

(b) Use the corresponding matrix Bpstq to extract the structural shocks et “ B´1pstqεt. Use only

periods for which the probability of the regime is high.

(c) Pick, with replacement, a sample of T structural shocks ebp1q, ebp2q, ¨ ¨ ¨ , ebpnq from te1, e2, ¨ ¨ ¨ u.

Note that the latter set can be have less than T elements if some periods are ambiguous in

terms of the regime (not high enough probability for any regime).

(d) If an interaction with an external shock εt is of interest, the bootstrap copy of the external

shock becomes εbp1q, εbp2q, ¨ ¨ ¨ , εbpnq. This is to assure the preservation of contemporaneous

effects of the external shock and the generated series.

(e) Define the new set of structural shocks e˚t by standardizing the series ebpiq.

(f) Use α τ, ρ, e˚t´1 and a standard normal random number to generate an observation of the

“latent” factor wt.

(g) Generate a time series p ftq
˚
t by p ftq

˚ “ypAqp ft´1q
˚ ` Bpstqe˚t using ypmq˚0 “ ypmq0 and st depend-

ing on the value of wt.

(h) Use the basis tv˚1 , v˚2 , ¨ ¨ ¨ , v˚mu and the time series p ftq
˚
t to generate a copy of the functional

time series f ˚t .

(i) Use the demeaned functional time series p ftq
˚ and if applies the shocks from step 3 to estimate

the statistics to be analyzed.
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