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1 Introduction

Governments finance a substantial fraction of their outlays via debt issuance. While there is
a large literature on how government decisions affect aggregate macroeconomic outcomes (for
example, Romer and Romer (2010) and Mertens and Ravn (2013) study the effects of various
tax changes, whereas Blanchard and Perotti (2002), Auerbach and Gorodnichenko (2012),
Ramey (2011), and Ramey and Zubairy (2018) study the effects of government spending),
there is surprisingly no work on the effects of government decisions on its borrowing costs as
encoded in the yield curve of government liabilities.1 Our paper tackles this question.
The question of how much a government’s decisions change its borrowing costs is crucial for
determining fiscal policies. This is most clearly evident from the literature on optimal fiscal
policies in equilibrium models, where a government has to take into account how its actions
will shift the yield curve (see, for example, Lucas and Stokey (1983), Barro (1979), and in
particular models of optimal fiscal policy that explicitly incorporate the yield curve such as
Buera and Nicolini (2004) and Angeletos (2002))2.
Not only is there thus a theoretical motivation for studying the effects of fiscal policy on

the yield curve, there is also indirect evidence that fiscal policy could have substantial effects
on the yield curve. In particular, we are motivated by two sets of empirical findings: Ang
and Piazzesi (2003) and Evans and Marshall (2007) highlight that macroeconomic factors are
important drivers of the nominal yield curve. Furthermore, the literature on the macroeco-
nomic impact of fiscal policy changes cited above generally finds substantial macroeconomic
effects of fiscal policies.
To give one example of direct empirical evidence on the effect that government decisions have
on the yield curve, Figure 1 plots the well-known series of exogenous tax changes identified
by Romer and Romer (2010) in the top panel and then below scatter plots and the associated
correlations between the shocks and various parts of the yield curve. The second row plots
contemporaneous correlations whereas the bottom row plots the shock in quarter t and the
yield curve in quarter t+ 1. We can see that there are significant correlations between these
tax shocks and the yield curve, both contemporaneously and lagged.

1In the current paper we focus on the yields on nominal U.S. government debt.The reasons for this choice
are threefold: First, the market on inflation-indexed bonds (TIPS) is substantially smaller and less liquid
than the corresponding market for nominal debt, the time series on TIPS yields is much shorter, and, finally,
the nominal yield curve in itself is a prominent object of study in economics and finance.

2While this point is clearly evident in models of optimal fiscal policy under rational expectations, knowl-
edge about the effect of fiscal policies on prices are key ingredients in any model of fiscal policy - for a model
of fiscal policy where policymakers do not have rational expectations see for example Karantounias (2020).
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Figure 1: Correlations between government spending shocks and spread (difference between 10 year yield
and 3 month yield), short (3 month yield), medium(5 year yield) and long term yields (10 year yield). The
estimated correlation is in the title of each panel indicating the significance level ∗ : 10%,∗∗ : 5%,∗∗∗ : 1%
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Our paper pushes this type of analysis further by asking how various government actions
affect not only certain points or functions of the yield curve, but the entire yield curve. We
want to answer this question without imposing too much structure on the yield curve. We
thus exploit recent advances in the theory of functional time series, where the yield curve
at each point in time is viewed as a realization of a random functional stochastic process.
With minimal structure imposed on the yield curve we can write this random function as
a combination of countably many basis functions with time-varying weights. Furthermore,
one can approximate this functional process well (in a sense we make precise later) using
only a finite number of basis functions. This leaves us with only the task of tracking the
finite-dimensional weights on these basis functions to characterize movements in the yield
curve. We show how this approach can be cast as a state space model to aid interpretation.
While this approach allows us to track movements in the yield curve, we want to go further
and identify the causal link between a government’s actions and changes in the yield curve.
To do so, we borrow measures of exogenous variation (or shocks) to total government spend-
ing, defense spending, government consumption, and government investment from Auerbach
and Gorodnichenko (2012) as well as shocks to personal and corporate income tax rates from
Mertens and Ravn (2013).3 The identification of these shocks is thus completely standard.
We then estimate how these measures of policy changes are related to changes in the yield
curve (the aforementioned weights in the basis functions, to be exact), which allows us to
compute impulse responses of the entire yield curve to these policy changes.
In terms of related literature, the closest paper in terms of topic to ours is Berndt et al.
(2012), who study the effects of defense spending shocks on the government’s financing de-
cision, i.e. whether the return on the government’s portfolio changes after a defense shock
or net surpluses change. Our paper focuses instead focuses on how different fiscal decisions
affect nominal borrowing costs at different maturities. In terms of methodology, we bor-
row from the recent literature on functional time series analysis - see for example Chang
et al. (2016)). The closest applied paper that uses ideas about estimating responses of entire
functions to economic shocks is Inoue and Rossi (2019), who incorporate level, slope, and
curvature factors from Nelson-Siegel type approach in a VAR to assess the effects of uncon-
ventional monetary shocks.
In the next section we use insights from the government budget constraint and an Euler equa-
tion to both further motivate our study and provide possible explanations for how government

3As robustness checks we also directly use the tax changes from Romer and Romer (2010) as well as the
defense spending news shocks of Ramey (2011).
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policies can influence the yield curve. In Section 3 we give an overview of our econometric
methodology aimed at macroeconomists. After that we turn to our main results.

2 Two Concepts from Economic Theory

In this section we highlight two concepts that are helpful to motivate our analysis and to
interpret the link between changes in fiscal policies and any associated changes in the yield
curve for nominal government securities.
First, following Berndt et al. (2012), we analyze the government’s budget constraint. In
contrast to Berndt et al. (2012), we will analyze the nominal budget constraint because of
our focus on the nominal yield curve. In nominal terms, the government’s budget constraint
is given by

Bt+1 =Rbt+1 (Bt−St) (1)

where Bt is the nominal value of outstanding government debt at the beginning of period t,
St is the nominal primary surplus, and Rbt+1 is the nominal gross return on the government’s
portfolio between t and t+1 4. Directly borrowing from Berndt et al. (2012), the government
budget constraint can be approximated via log-linearization as follows:5

nst− bt = Et
∞∑
j=1

ρj
(
rbt+j−∆nst+j

)
(2)

where nst is the weighted log nominal primary surplus ratio (for our purposes it will suffice
to think of it as a measure of nominal surpluses), bt = logBt, rbt = logRbt , and ρ is a parameter
between 0 and 1.
The key insight for our analysis is that changes in the surplus-to-debt ratio nst−bt will have
to manifest themselves in changes in expectations of either (i) returns on the government
portfolio or (ii) net surpluses. Berndt et al. (2012) focus on tracing out how changes in
defense spending affects this decomposition. Our focus is broader: We ask how changes in
different fiscal policies such as changes in different components of government spending and
changes in different tax rates affect the government’s borrowing costs. While these costs are

4Hall and Sargent (2011) have made substantial progress in computing theory- consistent measures of
Rbt+1. Other papers that have used the government budget constraint to analyze fiscal policy include Hilscher
et al. (2014), Giannitsarou and Scott (2008), and Chung and Leeper (2007).

5One can verify that the analogous conditions derived by Berndt et al. (2012) for their log-linearization
of the real budget constraint also hold for our log-linearization of the nominal counterpart.
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encoded in rbt (see Hall and Sargent (2011) for a clear exposition), we want to disentangle
how borrowing costs change across maturities - i.e. we directly study the effects of fiscal
policies on the entire yield curve.
While the government budget constraint provides a direct link between changes in fiscal
policies and borrowing costs, further information on the impact of fiscal policies on the yield
curve can be gleamed using the insight that government securities have to priced in such a
fashion as to entice market participants to purchase these securities.
To analyze this angle further, we turn to standard intertemporal asset pricing (see for example
Cochrane (2001) and Campbell (2017)). In particular, we assume the existence of a positive
real stochastic discount factorMt (which might not be unique). We will now study the yield
of a (zero-coupon) nominal government bond that matures next period. Such a bond pays a
nominal return Rnt,t+1 which is known at time t. We can use the stochastic discount factor
to determine the yield via

1 = Et

(
Mt+1

Rnt,t+1
πt,t+1

)

where π denotes (gross) inflation.
Given that the yield is known at time t, we get that

1
Rnt,t+1

= Et

(
Mt+1

1
πt,t+1

)

Next, we turn to multi-period risk-free nominal bonds (which deliver a known nominal return
Rt,t+j in j periods). Note that for zero coupon bonds, the yield is just R1/j

t,t+j .
To price these assets, we define a multi-period stochastic discount factor as

Mt+j =
t+j∏
t=1
Mt

We can then price a nominally risk-free j period asset as

Mt =Rnt,t+jEt

(
Mt+j

1
πt,t+j

)

For convenience, we define a third stochastic discount factor:

M∗t+j = Mt+j
Mt
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We can then rewrite the equation above as

1 =Rnt,t+jEt

(
M∗t+j

1
πt,t+j

)

Re-arrangeing this equation yields

1
Rnt,t+j

= covt

(
M∗t+j ,

1
πt,t+j

)
+Et(M∗t+j)Et

(
1

πt,t+j

)
= covt

(
M∗t+j ,

1
πt,t+j

)
+ 1
Rt,t+j

Et

(
1

πt,t+j

)

where Rt,t+j is the j-period return on a risk-free real asset6. We can use this equation
to identify important drivers of the nominal yield curve. Note that the terms on the right-
hand side of the previous equation are not independent, so shocks could move all objects on
the right-hand side. Both the levels of the real-interest rate and expected inflation as well
as the covariance between the inverse of inflation and the stochastic discount factor can be
important. In particular, we now know that if a fiscal shock moves the nominal yield curve
and in particular Rnt,t+j , such a shock has to move either expectations of the (inverse of)
inflation and real returns or the comovement between inflation and the stochastic discount
factor. To interpret this comovement, we find it useful to impose more structure on the
stochastic discount factorM.
For illustrative purposes, we find it useful to make a strong assumption onM: We use the
stochastic discount factor based on the consumption Euler equation for log utility.7 In that
case we get

Mt+1 = β
Ct
Ct+1

This tells us that an investor with log-utility really cares about states of the world where
consumption growth is low.8 In term of the earlier decomposition, the key covariance term
on the right-hand side now becomes

covt

(
βj

Ct
Ct+j

,
1

πt,t+j

)

What we can take away from this analysis is that fiscal policy induced changed in nominal
yields must make investors either update their views on average real returns (which are

6The inverse of this return is equal to the expected j period stochastic discount factor.
7Unfortunately log utility does not fit assets prices well generally, but it is useful to gain intuition.
8The risk free real return on a j-period security with log utility is given by

[
Et

(
βj Ct

Ct+j

)]−1
.
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directly linked to real consumption growth with this specific stochastic discount factor) and
average inflation or the comovement between inflation and real consumption growth growth.9

In particular, changes in fiscal policies could change investors’ views of the government and
thus lead them to update their perceptions of future economic growth and/or future inflation,
an argument we will return to later.

3 A Hitchhiker’s Guide to Functional Time Series Meth-
ods

In this section, we give a high-level overview of the functional time series methodology (Chang
et al. (2016)) we use throughout our paper.10 When large amounts of data are available on
economic variables that are theoretically linked via a functional relationship (such as in
various nominal yields being linked via the yield curve) our approach can directly exploit
this functional relationship.
We assume that observations of the yield curve are generated by a function yt : I → R that
describes the yield curve in the whole term structure. In period t, the yield for a security
that matures in t+ τ is given by yt(τ) where τ is a value taken from the set I. Here, I is the
interval of possible maturities (between 1 year and 30 years in our case).

3.1 Restrictions on the Yield Curve

In order to econometrically exploit the fact that all yields are linked via the yield curve, we
will put one mild restriction on the yield curve. We only study yield curves that are in L2(I),
the space of square integrable functions. This space contains all functions f(x) for which
the integral over I of the square of f(x) is bounded. While this space of functions is very
general (it includes functions that are not continuous, for example), it still imposes some
regularity, which seems reasonable for US data. More importantly, the restriction to L2(I)
gives us important mathematical tools to study the yield curve, which we discuss below. In
particular, we can now define an inner product in L2(I): For f and g we obtain

〈f,g〉=
∫
I
f(x) ·g(x)dx (3)

9Even with richer stochastic discount factors such as those derived using Epstein-Zin utility, consumption
growth is still a key determinant - see for example Campbell (2017).

10More details are provided in the appendix.
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A space that allow us to define a scalar product in it, like (3), is called a Hilbert Space. Not
only is L2(I) a Hilbert space, it is also a separable Hilbert Space11. This is a key property to
analyze the yield curve because it allow us to write the yield curve as the linear combination
of countable many functions {vi(τ)}i=1,2,3,···:

yt(τ) =
∞∑
i=1

αitvi(τ) (4)

Note that the functions vi(τ) are independent of t and that we can describe yt(τ) by the
sequence of real numbers {α1t,α2t, · · ·}. To be precise, as long as the basis functions vi(τ)
are linearly independent, there is an isomorphic relationship between the space of functions
and the space of all sequences R×R×R · · ·= R∞. This means, in our case, that every yield
curve can be interpreted as sequence of real numbers and every sequence of real numbers
can be traced back to a yield curve by combining the basis functions v1(τ),v2(τ), · · · . Any
set of linear independent functions in the space H will generate such an isomorphism, which
leaves us with the choice of basis functions. We will pick our basis functions trough functional
principal components that results from sequentially choosing each vi(τ) for i= 1,2, ..m so that
the largest amount of variability is explained by the sub-basis v1(τ),v2(τ),v3(τ), · · · ,vm(τ).
This fact is quite remarkable as it implies that assuming the continuity of the yield curve and
that the square of yield curve is integrable12 allows us to study the complete term structure
of the yield curve, not only modeling the cross-sectional interdependence of the different
maturities but precisely exploiting it.
This approach is different than models of the yield curve that describe the level, slope and
shape (or something similar): We are not imposing a particular set of functions to describe the
yield curve - instead we choose basis functions that jointly describe most of the fluctuations
in the yield curve.

3.1.1 A Finite Dimensional Representation of Yield Curve Dynamics

The dimension of a space is given by the number of elements in its basis. By this logic, the
space H is infinite dimensional as the basis {vi(τ)}i=1,2,3,··· that we used in (4) has infinitely
many elements. But we may consider “smaller” spaces, such as the space Hm that consists
of all elements that can be written as the linear combination of the first m elements of the
bases {v1(τ),v2(τ), · · · ,vm(τ)}. Thus, Hm is an m-dimensional space even if the elements in

11A separable Hilbert Space have bases that are countable, v1,v2,v3, ...
12This is not too restrictive as the square of the yield curve will likely be bounded.

9



Hm are functions, which are infinite dimensional.
The function yt(τ) is not an element of Hm given that we need more than just the first m
elements of the basis to represent it as we can see in (4). We can consider the projection of
yt(τ) on Hm given by

ỹt(τ) =
m∑
i=1

αitvi(τ) (5)

This gives us an equation akin to an observation equation in a state space model

yt(τ) =
m∑
i=1

αitvi(τ) +wt(τ) (6)

where wt(τ) = yt(τ)− ỹt(τ) is the approximation error we make by restricting ourselves to
Hm.
Let us now introduce a mapping from Hm to Rm

Hm 3 ỹt(τ) 7→ αt =


α1t

α2t
...

αmt

 ∈ Rm

Note that with the basis {v1(τ),v2(τ), · · · ,vm(τ)} and
(
α1t α2t · · · αmt

)′
we can recover

ỹt(τ) through (5). This isometry allow us to analyze an infinite dimensional object yt(τ)
through a finite dimensional approximation αt ∈ Rm.
Using functional principal components (as discussed in the appendix) we determine a basis
of functions {vi(τ)}i=1,2,3,··· such that its first m elements generate y(m)

t ∈ Rm a “best” ap-
proximation of yt(τ).13 Note that we can thus effectively choose a very efficient set of basis
functions for our purposes instead restricting ourselves to an a-priori chosen basis function
such as the monomials {1, τ, τ2...}.14 In particular, this approach to selecting basis functions
makes makes dealing with non-stationarities in the yield curve possible.
For the yield curve, with m= 5 we can express over 99.99% of the variability of yt(τ). This
principal components analysis (detailed in the appendix) also delivers a time series for the

13Given the way that the yield curve is constructed our basis functions are effectively linear combinations
of so-called wavelets, as discussed in the appendix).

14We show a plot of the first three basis function we use below in Figure 2.
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vector of weights αt =
(
α1t α2t · · · αmt

)′
. This vector αt can’t be directly interpreted

as yields as the measurement equation highlights that only together with the basis functions
{v1(τ),v2(τ), · · · ,vm(τ)} we can recover the yield curve. It does, however, serve as the state
in our state-space model for the yield curve.15 We next posit a VAR law of motion for αt.
In particular, we focus on a VAR(1) for the sake of parsimony.

αt = Aαt−1 +ut (7)

From an applied perspective, our approach can be thought of as modeling observations on
the yield curve at each point in time t via a state-space framework with a set of observation
equations (see equation 6) that link the yield of an asset with a specific maturity to a set of
basis functions that depend on the maturity and weights on each basis function, which vary
over time, but do not depend on maturity. These weights represent the states in our state
space model, which we model as a Vector Autoregression (VAR). as in equation 7.
It turns out that in our application the matrix A will have unit roots. We therefore find it
useful to rewrite the VAR for the state variables in error correction form:

αt = αt−1 +γβ′αt−1 +ut (8)

Recall that in an error correction model β is the matrix of cointegrating relationships in
αt. Given that αt was constructed by principal components, if the system has ` unit-roots,
then the (`+1)th,(`+2)th, · · · ,mth components have been stripped from all the unit roots so

15The analogy to state space models might be slightly misleading because we first compute the states via
principal components and then go on to model the law of motion for the estimated states, whereas standard
applications of state space models often employ a filtering algorithm (think about the Kalman Filter, for
example) that exploits a posited law of motion for the states when estimating the states. Our approach is
instead very much reminiscent of the standard two-step approach to linear factor models in standard time
series analyses (see for example Stock and Watson (2016)). The resulting model of the yield curve is still of
the state-space form.
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each one of them individually is stationary. Therefore, we can fix β to be

β =
0`×(m−`)

Im−`

=



0 0 0
...

1 0 0
...

0 0 1


αt and its associated basis functions have a very clear interpretation in our application, as
we highlight in Figure (2), which plots the basis functions associated with the first three
elements of αt. Note that the first two basis functions are associated with elements of αt
that have unit roots. We show two versions of our basis functions: one where we explicitly
impose that the first basis function is a constant, and one where we leave the first basis
function unconstrained. It turns out that the first basis functions is basically estimated to
be a constant anyway, but for clarity we impose this constraint from now on.
This means that one of the unit root processes will permanently shift the entire yield curve
by the same amount each period independently of maturity, while the second component will
permanently tilt the yield curve.

Figure 2: Basis functions before and after imposing the restriction of the first component to be the
constant function.
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3.2 Identifying Shocks

Our goal is to assess how αt changes as government policies change (as measured by the
various fiscal policy shocks we use). To do so we proceed as follows: First, we estimate
values of the one-step ahead forecast errors ut. We find it useful to rotate these shocks so
that they can be directly interpreted as either temporary shocks or permanent shocks. This
helps us with the interpretation of the effects of fiscal shocks, because we will be able to link
the fiscal shocks to either one of two permanent shocks (described below) or a temporary
shock. Then we will regress our measures of the fiscal shocks on these three shocks driving the
yield curve. The resulting regression coefficients will help us determine the impulse responses
of αt (and hence ultimately the yield curve) to fiscal shocks.
Where do these shocks come from? It turns out that there are two permanent shocks because
we find two unit roots in equation (7). Adding one temporary shock means these three
shocks explain 98.48% of the overall variance of ut in equation (7).16 We thus use two layers
of approximation in our analysis: First, we use a finite dimensional approximation of the
infinite dimensional vector αt. And then we focus on the three most prevalent shocks in ut
(our approximation will thus make the covariance matrix of the approximation to ut have
rank 3. We will call these three shock "semi-structural" from now on.

3.3 Identification Strategy for Three "Semi-Structural" Shocks

We aim to identify three semi-structural shocks:

1. Transitory Shock: A shock with a response that has no permanent effects. Given that
the permanent space HP is two dimensional, identification of a transitory shock implies
two restrictions.

2. Level Shock: A permanent shock with a response that has no permanent spread effects.
Because the permanent spread space is one dimensional, this identification implies one
restriction. Note that because of the form of the basis functions outlined in Figure (2),
this shock will naturally be associated with the first element of αt.

3. Spread Shock: A permanent shock with a response that may have both level and spread
longrun effects. Given the shape of the basis functions outlined in Figure (2), this shock

16Technically, the sum of the three largest eigenvalues of ut is equal to 98.48% of the total sum of all five
eigenvalues.
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will naturally be associated with both the first and second elements of αt. There are
no restrictions for identification of this shock.

We define εlev, εspd and εtra to be the level, spread and transitory shocks to the yield curve.

3.4 Impulse Responses to Fiscal Shocks

Given our previous discussions, we are in a position to compute impulse responses to the
semi-structural shocks outlined above. All that is left to do is to link these responses to
observable measures of fiscal shocks. To do so, we regress each fiscal shock measure εet on the
three semi-structural shocks: 17

ε̂et = βlevε
lev
t +βspdε

spd
t +βtraε

tra
t (9)

The impact response of αt to a one standard deviation shock in εet is then given by

βlevr
lev +βspdr

spd+βtrar
tra

where rx is the impact response of αt to semi-structural shock x.

4 Results

For the yield curve we use the model introduced by Gürkaynak et al. (2007) the data can be
obtained in the Board of Governors’ website18. In our sample for the yield curve starts in
1961. We use quarterly data - in particular, we use the yield curve on the last day of each
quarter as or quarterly observaiton of the yield curve. The exact sample for the regression of
the fiscal shocks on the yield curve shocks depends on the availability of the various shocks
- the samples for those regressions can be found in the original sources.
We measure various government spending shocks by identified shock from a linear VAR as

17We show the R2 for each regression in Appendix D.
18https://www.federalreserve.gov/data/nominal-yield-curve.htm
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described by Auerbach and Gorodnichenko (2012).19 Throughout, we will present impulse
responses for the yield curve by plotting how the entire yield curve changes t periods after
a shock. We will refer to t as the horizon, while we refer to the different maturities of the
yield curve to distinguish them from the horizon of the impulse response.

4.1 Shocks to Government Spending and Its Components

4.1.1 Shocks to Total Government Spending

Figure 3 shows the impulse response of the yield curve to an unexpected change in overall
government spending. There is no significant change at the short end of the yield curve.
Yields at long maturities increase significantly and do so permanently (i.e. this government
spending shock co-moves with the permanent semi-structural shocks we have identified). The
consumption highlights various avenues through which these changes can occur: (i) perma-
nent changes in the conditional expectations of (the inverses of) consumption growth and
inflation or its covariance. A change in government spending can influence these objects
in various ways: an unexpected change in fiscal policy could indeed just raise future con-
sumption directly through standard macroeconomic channels, but if imperfect information
is important then changes in government spending could also provide signals about either
the preferences or information of the government, which could lead households, firms, and
markets to update expectations.

19One slight deviation from that paper is that we control for forecasts of overall government spending in all
our VAR specifications. We do so to make sure that our identified shocks are truly unforecastable (Auerbach
and Gorodnichenko (2012) do not do this for all specifications). However, it turns out that the impact of
this change is minimal - the results are very similar if we take the exact specifications from Auerbach and
Gorodnichenko (2012), as we show in Appendix C.
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Figure 3: Impulse responses of the yield curve to a one standard deviation Government-spending shock.
Error bands are 68% significance bands computed using our bootstrap procedure.

4.1.2 Shocks to Defense Spending

We next turn to shocks to defense spending. These types of shocks have become prominent
in macro because many changes in defense spending are arguably exogenous with respect to
macroeconomic conditions (Ramey (2011)). 20 We again follow Auerbach and Gorodnichenko
(2012) to identify defense spending shocks. As Figure 4 shows, we find no significant move-
ments in the yield curve after defense spending shocks. This results is robust to using the
defense news shocks from Ramey (2011) as our shock measure instead, as we show in the
appendix.

20Disadvantages of this approach are that effects of defense spending might not be representative of
the effects of broader government spending, and unexpected variation in government spending might be
dominated by few events so that there is generally not a lot of variation that can be exploited in empirical
studies. We therefore chose to directly interpret our results as effects of defense spending shocks instead of
interpreting them as effects of general government spending.
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Figure 4: Impulse responses of the yield curve to a one standard deviation Defense spending shock. Error
bands are 68% significance bands computed using our bootstrap procedure.

If we instead use the defense spending shock as developed in Ramey (2011) we find very
similar results - see Appendix B.1 for the corresponding impulse responses.

4.1.3 Shocks to Government consumption and Investment

As highlighted by Boehm (2019), effects of government spending can vary substantially
depending on whether the shocks are government consumption or government investment
shocks. We identify shocks to these components of government spending as in Auerbach and
Gorodnichenko (2012). Figures 5 and 6 show that these shocks indeed have very different
effects on the yield curve. There is a significant negative response of the yield curve to a
consumption shock. Such a shock drags down the yield curve across all maturities on impact
(as can be seen in the left panel) and these effects are to a large extent persistent. A Shock to
consumption spending could lead to a decrease in yields because it signals that the economy
is not doing well, thus reducing expected growth. Furthermore, such a reasoning could lead
the central bank to cut interest rates, which can move the yield curve down.
The investment shock has a very different impact: it shifts the yield curve up. This effect is
not significant at the short end of the yield curve for all horizons we consider, but becomes
significant at even slightly longer maturities. This could represent the investor’s view that
government investment will lead to permanent positive effects on growth.21

21Note that after five years our point estimate of the impulse response is basically flat across maturities.
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Figure 5: Impulse responses of the yield curve to a one standard deviation Government Consumption
spending shock. Error bands are 68% significance bands computed using our bootstrap procedure.

Figure 6: Impulse responses of the yield curve to a one standard deviation Government Investment
spending shock. Error bands are 68% significance bands computed using our bootstrap procedure.

4.2 Income Taxes

We next turn the effects of unexpected changes in corporate and private income tax rates. Our
measures of shocks to these rates is borrowed from Mertens and Ravn (2013). Throughout
we normalize shocks (as in Mertens and Ravn (2013)) so that a shock increases the relevant
tax rate on impact.
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4.2.1 Personal Income Taxes

Personal income taxes have a strong effect at short maturities (in fact the largest absolute
effect on short maturities across all shocks we study). As highlighted by Mertens and Ravn
(2013), these shocks have sizeable but temporary effects on GDP growth, which could explain
the initial increase at short maturities. This effect is persistent though, as can be seen from
the right panel of Figure 7. When viewed through the lens of the Euler equation, these
results could suggest that market participants view these changes as strongly and positively
affecting consumption growth.

Figure 7: Impulse responses of the yield curve to a one standard deviation Personal Income Tax shock.
Error bands are 68% significance bands computed using our bootstrap procedure.

4.2.2 Corporate Income Taxes

Corporate tax rate changes turn out to have very different effects on the yield curve compared
to personal income tax changes. A corporate income tax increase persistently lowers the yield
curve across the board. Mertens and Ravn (2013) find that the output effects of these shocks
are smaller than for personal tax changes (but still positive and significant). One possible
explanation is that market participants view such a corporate tax change as a signal of
lower future growth. The absolute magnitudes are smaller than for the personal tax changes
though. As we show in Appendix B.2, the results when we directly use the Romer and Romer
(2010) measure as a tax shock are very similar to the impulse responses obtained using the
corprate tax shock from Mertens and Ravn (2013).
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Figure 8: Impulse responses of the yield curve to a one standard deviation Government Corporate Income
Tax shock. Error bands are 68% significance bands computed using our bootstrap procedure.

5 Conclusion

We have used recent advances in functional time series modeling to assess how the yield
curve moves after changes in fiscal policy. To be able to make causal statements we have
borrowed time series of unexpected changes (or shocks) in various fiscal instruments from
the rich literature on macroeconomic effects of fiscal policies.
Our key findings are that (i) there are strong very persistent/ permanent effects of all fiscal
policies (except defense spending) on the yield curve owing to the two unit roots found in
the nominal yield curve, and (ii) in terms of magnitudes one-standard deviation shocks to
personal income tax rates have the largest effects on the yield curve.
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A How to Model the Yield Curve Computationally?

In Gürkaynak et al. (2007) they build a model for the yield curve that interpolates the
information available to obtain an estimate of the actual yield curve at some period t that
matures in τ years :

yt(τ) = β0 +β1
1− e−

τ
φ1

τ
φ1

+β2

1− e−
τ
φ1

τ
φ1

− e
−τ
φ1

+β3

1− e−
τ
φ2

τ
φ2

− e
−τ
φ2

 (10)

about their estimation Gürkaynak et al. (2007) state in their paper: we choose the parameters
to minimize the weighted sum of the squared deviations between the actual prices of Treasury
securities and the predicted prices.
Let us for example consider a term structure starting at 3 months (τ = 0.25) and ending in
10 years (τ = 30), computationally, we consider 1024 maturities from τ1 = 0.25 to τ1024 = 30
in equally separated increments. With the values of the yield curve in those maturities we
obtain the observation in time t of the yield:

yδt = (yt(τ1),yt(τ2), · · · ,yt(τ1024)) ∈ R1024

There are two reasons to look for an alternative way of computing the yield curve: On the
one had, the information in yδt is not efficiently presented as there is a degree of redundancy
in the value of the components, it is certain that the value of yt(τn) is very close to and
highly correlated with yt(τn+1), it would be better if every component would provide us
with as much information about the yield curve as possible not included already in other
component. The second, rather technical reason, is that the basis implicitly meant in yδt is
based in so-called Dirac measures, these are functions that have the value one for τn and 0
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elsewhere in I

δτn(x) =

1 if x= τn

0 elsewhere in I

these functions are not continuous functions and therefore not functions in C(I).
More appropriately, we consider a basis of functions called “wavelets” and using a transfor-
mation we obtain from

R1024 3 yδt 7→ ywt ∈ R1037

see (Daubechies, 1992) for more details on the exact implementation of the wavelets.
A sample from the basis functions used to obtain ywt is shown in Figure 9

Figure 9: Selected basis functions of the wavelet basis.

Wavelets combine the frequency domain and time domain to optimally represent data (Daubechies,
1992). The combination of the wavelet basis and the sample of R1037 vectors {ywt } are the
computational representation of the yield curve that we use for further analysis. Using
wavelets here allow us to stick to our functional interpretation of the data, as the basis func-
tions are continous functions while we center our analysis on the weights or coefficients of
those functions given in {ywt }.
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A.1 What is the “best” Hm?

Now we explain how to apply functional principal components to determine, given m, which
is the optimal space Hm that best represents the variability yt in an m−dimensional space.
We consider each observation of yt a random function, that means, we assume the observed
value of the yield curve is the realization of a random process. The distribution of yt, as an
infinite dimensional object, is certainly an abstract concept that requires several technical
details that go beyond the scope of this note. Nevertheless, we are interested in at least
understanding what is the expectation of a random function Eyt and the covariance (opera-
tor22) of a random function.
Given the random function yt, in a separable Hilbert space H, we consider a fixed function
u ∈ H and the scalar product 〈u,yt〉 ∈ R. Not only this is a scalar, by definition of scalar
product, but also, even when u is fixed, this is a random variable due to the randomness of
yt and as a scalar random variable it has an expectation: E〈u,yt〉, we are familiar with the
notion of the expectation of a scalar random variable. This object, as a matter of fact, can
be interpreted as what mathematicians call a “linear functional”

H 3 u 7→ E〈u,yt〉 ∈ R (11)

the linearity follows from the properties of the scalar product and the expectation operator.
Obviously, this linear functional depends on yt, actually, there are many of such linear func-
tional. A very useful theorem in Functional Analysis actually tells us that the space of linear
functionals defined in H and the space H, itself, are isomorphic. This means that, for every
linear functional T : H → R there is one element of H that corresponds to it. The space of
all such T ’s is called the dual space of H and it is typically represented with H∗. For any
Tw in H∗ there is w ∈H such that

Tw(u) = 〈u,w〉

Thus, for the linear functional defined in (11) there is one corresponding element in H that
we define to be Eyt ∈H.
For two centered23 random functions f and g in H we define E(f ⊗g) to be their covariance

22It is helpful to think of an operator as the infinite dimensional generalization of a matrix.
23By centered we mean that Ef = Eg = 0. Where here 0 is the constant function 0.
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operator such that for all u,w in H

〈u,E(f ⊗g)w〉= E〈u,f〉〈v,g〉 (12)

Note that the expectation (12) gives us a way to compute the the covariance operator. The
expectation on the left is the expectation of the product of two scalar random variables and
should be intuitively clear.
Let us assume now that yt is a centered process. We define the covariance operator Q to
be Q = Eyt⊗ yt. The spectrum of Q is the set of real numbers |Q−λ · 1| is singular. Here
1 represents the identity operator such that 1(u) = u. Given the fact that H is a separable
Hilbert space the spectrum of Q is countable. The elements in the spectrum Q are ordered
as follows: λ1 ≥ λ2 ≥ ·· · for each one of those values we have eigenfunctions that solve

(Q−λi ·1)vi = 0

We consider the basis {v1,v2,v3, · · · ,vm} which are elements of H and therefore continuous
functions vi : I → R. The portion of the variance of yt in H that is captured by y(m)

t in Hm

is given by the ratio
∑m
i=1λi∑∞
i=1λi

by considering the values λi in decending order we are capturing the largest portion possible
by a basis of m elements.

Estimation of Hm

Once we have the sample of the yield curve {ywt }t=1,··· ,T given in terms of the basis of wavelet
functions we proceed to obtain what we referred to as “optimal” basis at the beginning of
this note.
To estimte Hm we need to estimate Q first. We use ywt in the following way to obtain the
estimator of Q

Q̂= T−1
T∑
i=1

ywt y
w′
t
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recall that ywt is a vector and that the outer-product is well defined here. We approximate
v1,v2, · · · with the eigenvectors of Q̂ : v̂1, v̂2, · · · that correspond to the eigenvalues of λ̂1 ≥
λ̂2 ≥ ·· · and we estimate the portion of variance explained by the first m eigenvalues by

∑m
i=1 λ̂i∑1037
i=1 λ̂i

(13)

to choose an appropriate m we want the expression of (13) to reach some threshold such
a 90% for example. Values of m “too” large can cause an phenomenon called illed-posed
problem: λm decreases to a point that Q is close to singular. We expected this to happen
as the number of parameter used to generate yt in (10) as even when the parameters do no
interact linearly the sources of variations is finite.
The space Hm is then estimate by span({v1,v2, · · ·vm})

B Additional Specifications for Robustness

Here we show results from alternative specifications used to corroborate our results.

B.1 Narrative Government Spending Shock

(Ramey, 2011)

Figure 10: Impulse responses of the yield curve to a narrative government spending shock. Error bands
are 68% significance bands computed using our bootstrap procedure.
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B.2 Narrative Tax Shock

Romer and Romer (2010)

Figure 11: Impulse responses of the yield curve to a narrative tax shock as estimated in Romer and
Romer (2010). Error bands are 68% significance bands computed using our bootstrap procedure.

C Adding Forecasts of Government Spending to Our
VARs

As highlighted in the main text, we add the forecasts of total government spending growth
from the Survey of Professional Forecasters to all our VARs for government spending. In this
section we show that the resulting shocks are actually very similar to sticking to the original
specifications from Auerbach and Gorodnichenko (2012). For the sake of brevity we only
show plots of the two resulting shock series for each government spending shock we consider.
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Figure 12: Government spending shocks with and without controlling for expectations.

Figure 13: Defense spending shocks with and without controlling for expectations.
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Figure 14: Investment spending shocks with and without controlling for expectations.

Figure 15: Consumption spending shocks with and without controlling for expectations.
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D R2 for Regressions Linking Fiscal Shocks and Yield
Curve Shocks

Shock R2 in equation (9)
Benchmark Shock 5.66%

[2.44%,8.87%]

Defense Shock 1.94%
[0.54%,3.34%]

Non-Defense Shock 3.15%
[0.96%,5.33%]

Consumption Shock 4.33%
[1.74%,6.92%]

Investment Shock 4.16%
[1.5%,6.82%]

Table 1: R2 and boostrap-based 16th and 84th percentiles.

E Bootstrapping

We will use bootstrapping to determine the confidence intervals of the statistics we estimate
for the yield curve and its responses to external shocks. In the case we are interested in
determine the response of the yield curve to an external shock we consider a sample of the
yield curve that matches the sample of the external shock. The majority of the external shocks
we consider here are given in quarterly frequency so we consider the last daily observation
of the yield curve on the corresponding quarter. That way, we have two identical samples in
size and frequency for the yield curve and an external shock.
In the following, we show how to generate copies of functional time series and the external
shock of size n:

1. Take the residuals from (8): ût = ∆y(m)
t − α̂βy(m)

t−1

2. Pick, with replacement, a sample of n residuals ûb(1), ûb(2), · · · , ûb(n) from {û1, û2, · · ·}

3. If an interaction with an external shock εt is of interest, the bootstrap copy of the
external shock becomes εb(1), εb(2), · · · , εb(n). This is to assure the preservation of con-
temporaneous effects of the external shock and the generated series.

4. Define the new set of residuals u∗t = ûb(t)−µub , where µub is the mean of the sample
taken in step 2. The mean of u∗t is therefore 0.
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5. Generate a time series y(m)∗
t by y(m)∗

t = Âmy
(m)∗
t−1 +u∗t using y(m)∗

0 = y
(m)
0 .

6. Use the basis {v̂1, v̂2, · · · , v̂m} and the time series y(m)∗
t to generate a copy of the func-

tional time series y∗t .

7. Use the demeaned functional time series y∗t and if applies the shocks from step 3 to
estimate the statistics to be analyzed.

In this study, we estimate the responses at different horizons of the yield curve to the semi-
structural shocks identified above. The correlation between the semi-structural shocks and
the external shocks. The regression coefficients and R2 of the fiscal policy shock on the
semi-structural shocks. The impulse response function of the yield curve to the projection of
the fiscal policy shock on the semi-structural shocks and the forecast error variance decom-
position. We calculate each of these statistics for every copy ỹt and determine the confidence
intervals from the quantiles of each calculated statistic.
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